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Abstract

Solutions of the full steady axisymmetric Navier-Stokes equations
for breakdown in an unconfined viscous vortex have been obtained by
Grabowski and Bergerl. The core Reynolds numbers were varied up to 200
and a two-parameter family of velocity distributions was assumed upstream
as the boundary condition. In this report, the Richardson numbers
corresponding to the developing solution profiles of Grabowski and Berger
are calculated and shown graphically. The inviscid linear stability of
the swirling velocity profiles as calculated by Grabowski'and
Berger is investigated with respect to non-axisymmetric disturbances.

This eigen-value problem is solved numerically for various wave numbers

- and it is shown that the developing velocity profiles lead to instability.

These results are believed to be useful in analyzing instabilities for

a trailing vortex from an aircraft.
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i Introduction

Vortex flows are encountered on the fofe-bodies of aircraft at high
angles of attack that suddenly become assymetrical thereby causing depar-
ture into spin. Vortex bursting can occur suddenly decreasing the lift and
producing adverse results’, A great deal of potential hazard is associated
with the wake turbulent behind an aircraft. This happens due to the per-
sistence of a trailing vortex system in the wake of a vehicle. Another
aircraft flying into this vortex system can experience large perturbations
in flight path leading to possible loss in pilot control of this vehicle.
The problem of vortex breakdown occuring over delta wings at large angles

i of attack and in axisymmetric swirling flows in circular pipes has been
extensively studied in the past. A number of survey articles has been

17,18 Leibovichl?, Singh and Hankeyzo].

written on the subject [see Hall
All the experimental observations indicate that two dimensionless
o parameters govern the occurence of vortex breakdown both over delta wings
and for swirling flows through tubes: (1) the Reynolds number Wsrs/v and
{(2) the circulatior number q/wsrs where Ws and q are the axial velocity
and circulation at large radius T respectively in cylindrical coordinate
| system (r,8,z). v is the kinematic viscosity and T is the characteristic
length. When the fluid flows past a lifting wing it produces trailing

vorticity which at some distance downstream concentrates into two trailing

line vortrices. A characteristic feature of a steady trailing line vortex

g

is the existence of strong axial currents near the axis of symmetry. The
link between the azimuthal and the axial velocity components in vortices

is provided by the pressure; the radial pressure
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gradient balances the centrifugal force, and any change in the azimuthal
motion in the axial direction downstream produces an axial pressure gra-
dient and consequently axial acceleration. The expression of the velocity
distribution for the steady axisymmetric trailing line vortices in cylin-

drical coordinates (r,8,z) is obtaineds‘as

v(r) = qll-exp(-8r2)]/r 1)
Wr) = W)+ W exp(-Br’) @

where v and w are the swirl and axial velocity components. The parameters
q, B and Ws vary slowly with axjal distance z. The swirl velocity v given
by (1) resembles a solid-body rotation near the axis z = 0 and represents
the line-vortex flow away from the axis. The axial velocity w(r) gives the
axially-symmetric jet and wake like velocity distribution for a certain com-
bination of Wl and Ws.

The full Navier-Stokes equations have been numerically integrated by
Lavan, Nielsen and Fejer4, Kopecky and Torrance5 and Grabowski and Bergerl.
All three sets of investigators assumed the flow to be incompressible and
axisymmetric. The initial profiles, imposed at the junction z = o were
special cases of (1) and (2) and then the numerical solution was obtained
for z > o, covering a range of Reynolds numbers from four to several hundred.
Lavan et a1.4 treated low-Reynolds-number flow passing from a rigidly rotating
circular pipe into a stationary pipe of the same diameter. Thus they dealt
with a geometry and a Reynolds number range very different from those in vortex
breakdown experiments. On the otherhand, Kopecky and Torrance5 considered a
more realistic situation resembling to those of vortex breakdown experiments
in a tube, concerning the geometry, initial conditions and the range of

Reynolds number. Calculations performed by Grabowski and Berger1 in an un-

confined region are more extensive and have greater resolution than those of
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Kopecky and Torrance. Their solutions exhibit many of the characteristics
of vortex breakdown. Taken together the last two results are of great
importance to the determination of internal structure in the breakdown
region. And the numerical experiments convincingly demonstrate that the
Navier-Stokes equations do indeed have solutions with embedded regions of
closed stream surfaces which resemble the axisymmetric bubble form of the
vortex breakdown.

It is possible that the vortex breakdown may occur from an instability
of the mean flow. The inviscid criterion for stability of rotating flows
due to axisymmetric disturbances was first derived by Rayleigh6. In fact,
the "Rayleigh criterion” (d/dr)(rv)2>o is shown to be sufficient for stability
even with viscosity by Synge7. Howard and Gupt38 have shown that for given
mean axial velocity w(r) and swirl velocity v(r), stability of the basic flow
to axisymmetric disturbances is guaranteed if the Richardson number criterion
r's(dw/dr)'z[d(vr)z/dr] > 0.25 is satisfied. Many other investigators have
studied the stability of vortex flows. The stability of a pair of trailing
vortices during the early growth stage has been analyzed by Crowg. Both
symmetric and antisymmetric eigenmodes were shown to be unstable. Widnall

10 studied the motion and stability of a vortex filament containing

and Bliss
an axial flow in the limit of slender-body theory. Stability of a rotating
axisymmetric jet surrounded by a potential vortex to infinitesimal distur-
bances in the inviscid incompressible fluid approximation was considered by
Uberoi, Chow and Narainl1 in the approximation of long and short wavelengths.
Lessen, Deshpande and Hadji-Ohane512 analyzed the stability of a potential
vortex with a rotating and non-rotating jet core and showed that the poten-
tial vortex becomes unstable in the presence of a jet. The stability of swir-
ling flows with mean velocity profiles given by (1) and (2) for a trailing

vortex from an aircraft has been studied by Lessen, Singh and Paillet13
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and Lessen and Paillet14 both for inviscid and viscous theory with respect
to infinitesimal non-axisymmetric disturbances (with normal modes given

by exp[i(az+n8-act)]. It is found that in both cases the parameter q governs
the stability. Flows are stable to axisymmetric disturbances provided

q > 0.4, which always seems to be the case in experiments leading to vortex
breakdown. For non-axisymmetric disturbances, stability is assured if

q > 1.5 while instability is obtained for small values. The experiment
performed by Singh and Uberoi15 on trailing tip vortices verifies the
presence of laminar instability modes associated with large axial velocities
in the vortex core region. Garg16 in the experimental study of the struc-
ture of vortex breakdown in a tube observed that fluctuations are somewhat
more regular and more intense in the breakdown region than in the wake, and
are stronger in the bubble form of breakdown than they are in the spiral
form.

In the present study, the inviscid stability of the developing axial
and swirling velocity profiles (as obtained by Grabowski and Bergerl) is
investigated. The analysis of Howard and Gupta has shown that all the
vortex flows are stable subject t§ infinitesimal axisymmetric disturbances
provided the Richardson number J = [(r2v2)'/r3w'2] > 0:25. The Richardson
numbers calculated for the developing profiles of Grabowski and Berger
show that for the most part the abové-mentioned condition is satisfied.
That is why only non-axisymmetric disturbances corresponding ton = 1 and
n = - 1 (where n is the azimuthal wave number of the Fourier disturbance
of the type exp[i(az+n8-act)]) are considered. For various profiles, the
real and imaginary quantities of the complex phase velocity ¢ are numeri-

cally calculated corresponding to the wave number a and these are compared

with those given by Lessen, Singh and Pailletls.
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Mathematical Analysis

In this section, first the non-dimensional Navier-Stokes equations
in cylindrical coordinates are given. The numerical investigation of
vortex breakdown undertaken by Grabowski and Berger1 is then outlined and
their solutions discussed. And finally the linear inviscid stability
analysis is formulated.

The conservation of mass and momentum equations for an incompressible
flow in terms of cylindrical coordinates (r, 8, z), with corresponding
velocity components (u, v, w) are

; 1 2(ur) 1 3av W
‘ r or *T et "0 1
du du v tu o dw vZ_ % 1 po2. U 2
T T R T 'ar"Re[V“'rz'rz 261 (2)
v v . v 3v v ,u _ % Jre2,. v, 2 3u
7 TV Tree tYsr T ree*Re[V" * ZEG] (3
> T T
Iw 3w v 3w w _ 3 1
. % U *T I Vi T m TRe VM 4)
2 2 2
wherevz=—;-3-—~n-%--3-§-+L . 2
ar? r2 292 322

i The velocity components have been non-dimensionalized by the free-stream
axial velocity W _, lengths by a characteristic core radius 5, time t by

5 /W_ and pressure by pWi after subtraction of p_ the uniform static pressure

-

from the vortex. The core Reynolds number is given by R e = WS /v. Con-
E ditions that approximate those expected in a real vortex flow have been

applied by Grabowski and Berger at the boundary of a sufficiently large

finite region. At the upstream boundary z = 0, it is

> ”’W“"”&' oo
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u(r) = 0 for 0 ¢ r ¢ R (3

v(r) = Vr(2-r?)

w(r) =8+ (1 - 8)r2(6-8r + 3r2) for 0 sr <1 (6)

v(r) = V/r, andw(r) =1 for1 < r ¢ R (N
At the downstream boundary z = L, 0 £ r ¢ R

Ju dy _ _81 -

5z =0 =0, and 3% =0 (8)
On the axisr =0, 0 £ z ¢ L

w
u-O,v-Oand?—r--O 9

At the radial boundary r = R, 0 < z € L

21 _o,v < V/R, andw = 1. (10)

In the above-mentioned boundary conditions 3 and V are the two parameters,
V is the specified circumferential velocity at the core edge; it is equal
to the circulation around the core after non-dimensionalization by ZnSW;.
R and L are much larger than one. The parameter 8 is the ratio of the
axial velocity at the core center to the velocity in the free stream and
uniform velocity results when 8 = 1. B8 greater or less than one yields
jet-like or wake-like profiles respectively.

The axisymmetric forms of equations (1) to (4) [ 9/ %6 0] have been
solved by Grabowski and Berger1 subject to the conditions (5) to (10) for
V = 0-85, 0-8944, 1-0 and 1095, Re up to 200 and various values of 3.
For Re = 200, 3 = 1 and V = 1.095, they have shown graphically the stream
function contours and comparison with the axisymmetric bubble followed by
spiral breakdown (fromSarpkayaZI) is quite good. This is reproduced in Fig.

1 of this report. Figures 2 and 3 show the axial and swirl velocity profiles

for the same parameters.




S — |

-7-

The linear inviscid stability problem of the velocity profiles obtained
by Grabowski and Berger1 as shown in Figs. 2 and 3 is now formulated by
deriving the well-known linearized momentum and continuity perturbation
equations. Let u', v', w' be the radial, azimuthal and axial components of
velocity perturbatior respectively and P', the pressure perturbation. We
can then assume

fu', v', w', p'} = & G, H, F, P}(r) expli(oz - act) + nisd] (i
where a and n are axial and azimuthal wave numbers, ¢ = e, * ici is the
complex phase velocity and F, G, H and P are the complex amplitudes of
perturbation. If c; < 0, the disturbances die down and for ¢y > 0, the
perturbation increases without limit and the mean velocity profiles pre-

dict instability. On substitution of (11) into the linearized forms of

equations (1) to (4), we obtain (see Lessen, Singh and Pailletls)

arF + (rG)' + nH=0 (12)
r2yG + 2rvH - r2p' =0 (13)
r2yH + r(rv)' G + nrP = 0 (14)
r2yF + 12w G + a?r?P= 0 (15)

In equations (12) to (15), the coefficients of 1/Pe have been taken to be
zero to study the inviscid stability. Primes denote differentiation with
respect to r and

vy = a(w - ¢) + nv/r, (16)

The boundary conditions to integrate (12) to (15) are

G(0) = H(0) = 0, F(0), P(0) finite for n = 0, (17)
G(0) + H(0) = 0, F(0) = P(0) = 0 for n = %I, (18)
G(0) = H(0) = F(0) = P(0) = 0 for |n}>1, (19)
G(») = H(®) = F(») = P(») = 0 for all n. (20




The requirements are that F and P do not depend on 6 at r = 0 and all the

quantities be finite for all values of r.

For the axisymmetric case n = 0, Howard and Gupta8 derived the

sufficient condition for stability that all the vortex flows are stable

subject to infinitesimal axisymmetric disturbances provided the Richardson

number

J = (x2v®) /(r3w?) 30-25. (21)

In figures 4 to 8, we have sketched the Richardson number J vs. r for

five velocity profiles v and w of Grabowski and Berger at five plane sections

z = constant, as indicated in figures 2 and 3.

Equations (12) - (15) can be reduced to two first-order equations, which

are more suitable for numerical integration.

G‘= [GW’ - azry(vf + v/r)/n - %'_] G - (GZrZ - nZ)H/m (22)

H‘=-[nv' + a(rw‘ + w-c) + 2nv/r] H/y

-[(v + ®~°G]"/r - nG/r (23)

The equations (22) - (23) along with the boundary conditions (17) - (20)

As a time wise stability problem, an

constitute an eigen value problem.

attempt will be made to determine ¢ as an eigen value for given values of a

The disturbances are amplified or damped with

for five profiles v and w.

time depending upon whether ¢, > 0 or ¢; < 0 respectively and c; = 0

characterizes neutral disturbances.
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Numerical Solution and Results

Lessen, Singh and Paillet13 have pointed that translation and inver-
sion of the axial velocity profile only affects the frequency and does
not alter the amplification factor Cy- That is why in our numerical cal-

culations, the axial velocity w has been replaced by w-1. In this Qay

the asymptotic nature of both the axial and swirl velocity profiles ob-
tained by Grabowski and Berger for large r is similar those used by Lessen,
Singh and Paillet. The procedure to find the conditions for integrating
equations (22)-(23) has also been discussed by Lessen, Singh and Paillet.
The same procedure is adopted here. For large r (say r = 3)(w=- 1) > 0 and
v + V/r, and (12)-(15) reduce to Bessel's equation in F. The solution
valid at large r is the modified Bessel function Kn(ar). Then G = -F“/a
and H=n Kn(ar)/ar, where prime denotes differentiation with respect to r.
Starting with these asymptotic values, the solution of (22) and (23) is ad-
vanced towards r = (0 by numerical integration, and then matched to the
known Frobenius series solution at some fixed radius (say r = 0.2) near

Zero.

Verma, Hankey and Sc:.herrz2 described the numerical Fortran program for
such problems in detail and for the numerical calculations in this paper,
the same program was used. To test the program, we have tried to reproduce
two to three eigen values s and c.vsa from Lessen, Singh and Paillet's

published results (say Fig. 2). Their results were obtained when the nu-

merical integration is performed starting from r = 3 to r = 0.2 for q = 0.02

and 0.03, o = 0.2, ¢ = 0.045 and 0.112, and c. = 0.385 and 0.402.

The eigen values obtained for the three velocity profiles corresponding

the various wave numbers a are similar to those calculated by Lessen, Singh
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and Paillet. For the azimuthal wave numbers n = 0 and 1, all the distur-
‘ bances die out just as the results obtained by them for q ~ 0(1). In
this report we have calculated the eigen values for n = -1 and -2 only.
These are given in Tables 1 and 2 respectively. Thus it is shown that
these profiles are unstable corresponding to the non-axisymmetric distur-

bances. Cases 1, 2 and 3 corresponds to the velocity profiles numbering 2,

3 and S respectively in figures 2 and 3.
Table 1

Eigen values forn = -1, V = 1,095, B = 1 and Re = 200

Case 1 Case 2 Case 3
] c, acy ¢, ac; <. ac,
0.1 .385 0.056 -- -- - -
0.2 .462 0.074 .295 0.033 -~ -~
0.3 .539 0.085 .378 0.054 0.301 0.023
~ 0.4 .581 0.091 .425 0.063 0.338 0.041
0.5 .630 0.093 .516 0.069 0.395 0.052
0.6 .661 0.092 .563 0.070 0.461 0.052
0.7 .695 0.087 .620 0.063 0.533 0.045
0.8 .721 0.073 .661 0.048 0.596 0.027
0.9 .778 0.051 .695 0.020 -- --

-WN"?U% o

4
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Table 2

Eigen values forn = -2, V = 1.095, 8 = 1 and Re = 200

Case 1
ac,
0.084
0.118

0.139

Case 2 Case 3
acy oy
0.072 0.060
0.104 0.091
0.122 0.111
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Fig. 3  AXIAL VELOCITY PROFILES -- Re = 200, o = 1.0, V = 1.095
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Figure 6
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